Readme Card

Iā€™m thrilled to announce today marks the release date of my very own open-source Python package, supported by PySport!

The š®š§š«šššÆšžš„š¬š©šØš«š­š¬ package is designed to help researchers, analysts and enthusiasts by providing intermediary steps in the complex process of converting raw sports data into meaningful information and actionable insights.

šŸŒ€ Its current functionality helps to convert football tracking data from 6 providers, using š¤š„šØš©š©š², into graphs specifically designed for training š†š«ššš©š” ššžš®š«ššš„ ššžš­š°šØš«š¤š¬ with Spektral.

It is my aim to add even more functionality in the future, not only for football!

1ļøāƒ£ To get started, simply š„šØššš data and šœšØš§šÆšžš«š­ into graphs.

2ļøāƒ£ š’š©š„š¢š­ š­š«ššš¢š§, š­šžš¬š­ and šÆššš„š¢šššš­š¢šØš§ datasets along match or period with the built in functionality.

3ļøāƒ£ šˆš¦š©šØš«š­ and šœšØš¦š©š¢š„šž the pre-built š‚š«š²š¬š­ššš„š†š«ššš©š”š‚š„ššš¬š¬š¢šŸš¢šžš« (as detailed in the 2023 Sloan Sports Analytics Conference paper by Amod Sahasrabudhe and me), or design your own architecture from scratch.

4ļøāƒ£ Now, š„šØššš the Graphs using the Spektral DisjointLoader and šŸš¢š­ the model.

5ļøāƒ£ Finally, šžšÆššš„š®ššš­šž and š¬š­šØš«šž the model and use it to make š©š«šžšš¢šœš­š¢šØš§š¬!

šŸŒ€ For complete Jupyter Notebook on how to execute all of the above steps and additional documentation check out the šˆš§-ššžš©š­š” š–ššš„š¤š­š”š«šØš®š š” on GitHub or the šš®š¢šœš¤š¬š­ššš«š­ š†š®š¢ššž.

šŸŒ€ š®š§š«šššÆšžš„š¬š©šØš«š­š¬==šŸŽ.šŸ.šŸŽ

šŸˆ This new version includes a converter specifically built for converting hashtag #BigDataBowl American Football positional data.

āš” The American Football implementation is lightning fast because it runs on a Polars back-end!

šŸŒ€ Here is a šššš¬š¢šœ š–ššš„š¤š­š”š«šØš®š š” of the new AmericanFootballGraphConverter.


<
Previous Post
šŸ“± GroundhopMap.com
>
Next Post
šŸ”¬ An Intuitive Measure for Pressing